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Abstract— This study had two main objectives: (i) to study
the effects of volume conduction on different connectivity met-
rics (Amplitude Envelope Correlation AEC, Phase Lag Index
PLI, and Magnitude Squared Coherence MSCOH), comparing
the coupling patterns at electrode- and sensor-level; and (ii)
to characterize spontaneous EEG activity during different
stages of Alzheimer’s disease (AD) continuum by means of
three complementary network parameters: node degree (k),
characteristic path length (L), and clustering coefficient (C).
Our results revealed that PLI and AEC are weakly influenced
by volume conduction compared to MSCOH, but they are not
immune to it. Furthermore, network parameters obtained from
PLI showed that AD continuum is characterized by an increase
in L and C in low frequency bands, suggesting lower integration
and higher segregation as the disease progresses. These network
changes reflect the abnormalities during AD continuum and
are mainly due to neuronal alterations, because PLI is slightly
affected by volume conduction effects.

I. INTRODUCTION

The human brain can be conceptualized as a complex
network in which billions of neurons interact. EEG allows
measuring the brain electrical activity generated by synchro-
nized cortical neurons in a non-invasive way with a high
temporal resolution. However, time series that are recorded
from nearby sensors are very likely to pick up activity
from the same brain sources, which gives rise to spurious
correlations between them. This is known as the problem of
‘volume conduction’ [1]. Many source localization methods
have been developed to estimate the underlying source activ-
ity and overcome the volume conduction problem. Neverthe-
less, source inversion is an ill-posed problem and different
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Vallejo, Vı́ctor Gutiérrez-de-Pablo, Vı́ctor Rodrı́guez-González, Aarón
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methods use specific types of assumptions to restrict the
results and provide a unique solution [2].

Dementia due to Alzheimer’s disease (AD) is a progressive
neurodegenerative disorder that is the most common cause
of dementia. AD is usually preceded by a prodromal stage
known as mild cognitive impairment (MCI), with a conver-
sion rate to AD of approximately 15% per year, whereas
healthy controls conversion rate is only 1%–2% per year [3].
Furthermore, depending on the affected brain regions and the
symptoms, three different stages can be distinguished during
AD evolution: mild AD (ADmil), moderate AD (ADmod),
and severe AD (ADsev).

EEG activity from MCI and AD patients is progressively
modified as a consequence of the pathophysiological pro-
cesses. Traditionally, EEG recordings in AD have been ana-
lyzed using local activation techniques in individual sensors
(both spectral and non-lineal analyses) [4]. However, in
order to study the AD brain as a complex network, the
application of connectivity metrics and parameters derived
from graph theory have focused great attention. In this
regard, it is important to use a connectivity metric that
minimizes the spurious correlations that can appear due to
volume conduction.

Our main objectives were to evaluate how different con-
nectivity metrics are affected by volume conduction and
to analyze the ability of different network parameters to
characterize the brain networks during the AD progres-
sion. Specifically, the following research questions were ad-
dressed: (i) which of the analyzed connectivity metrics shows
the higher relationship between source-level and electrode-
level results?; and (ii) are network parameters derived from
these measures capable of reflecting brain alterations during
AD continuum at electrode-level?

II. MATERIALS

A. Subjects

EEG resting-state activity was analyzed in 51 healthy
controls (age 80.1 ± 7.1 years, mean ± standard deviation),
51 MCI subjects (age 85.5 ± 7.2 years), 51 mild AD
patients (age 80.5 ± 6.9 years), 50 moderate AD patients
(age 81.3 ± 8.0 years), and 50 severe AD patients (age
80.0 ± 7.8 years). Patients with MCI and dementia due to
AD were diagnosed according to the criteria of the National
Institute on Aging and Alzheimer’s Association (NIA-AA).



The control group was composed of elderly subjects with no
history of neurological or psychiatric disorders.

Participants and caregivers were informed about the re-
search background and the study protocol. All of them
gave their written informed consent to be included in the
study. The Ethical Committee of the Porto University (Porto,
Portugal) approved the study according to the Code of Ethics
of the World Medical Association (Declaration of Helsinki).

B. Electroencephalographic recordings

Five minutes of resting-state EEG activity was recorded
with a 19-channel system at a sampling frequency of 500 Hz
(Nihon Kohden Neurofax JE-921A). Electrodes were placed
following the 10-20 International System at: Fp1, Fp2, Fz,
F3, F4, F7, F8, Cz, C3, C4, T3, T4, T5, T6, Pz, P3, P4,
O1, and O2. Subjects were asked to remain with their eyes
closed, still and awake during EEG acquisition.

Then, recordings were preprocessed in three steps [5]: (i)
independent component analysis to remove components with
artifacts; (ii) FIR filtering using a Hamming window filter to
limit the spectral content to the frequency band of [1 70] Hz;
and (iii) visual selection of artifact-free epochs of 5s.

III. METHODS

A. Source reconstruction: sLORETA

Time series at source level were obtained using
standardized low resolution brain electromagnetic
tomography (sLORETA), available in Brainstorm
(http://neuroimage.usc.edu/brainstorm) [6]. Since there
is no unique solution to the inverse problem, sLORETA is
based on a model of lineal distributed source. It provides
a solution assuming that nearby neurons are synchronized,
maximizing the correlation between neighboring sources
[7]. In addition, sLORETA applies physiological restrictions
on the estimated sources to reduce the errors. The high
dimensionality of the source-level signals was limited using
the Desikan-Killiany atlas to project the signals in 68
Regions of Interest (ROIs). Technical details of the method
are described in [7].

B. Connectivity metrics

In order to compare the connectivity results at electrode
and source-level, three complementary coupling metrics
were analyzed: Amplitude Envelope Correlation (AEC),
Phase Lag Index (PLI), and Magnitude Squared Coherency
(MSCOH).
AEC is an estimation of the correlation between the

amplitudes of two time series. Firstly, time series were
orthogonalized in order to remove spatial leakage effects
[8]. Then, AEC is obtained by computing the Pearson
correlation between the log transformed power envelopes
using the Hilbert transform [9].
PLI between two time-series quantifies the asymmetry in

the distribution of phase differences [1]:

PLI = |〈sign sin(∆φ)〉|, (1)

where 〈·〉 indicates the expectation operator and ∆φ is the
phase difference or relative phase.
MSCOH measures the similarities in the frequency con-

tent of two signals, combining both amplitude and phase
information. It is defined as [10]:

MSCOHX,Y (f) =
|SXY |2

PXPY
, (2)

where SXY is the cross-spectrum of signals X and Y , and
PX and PY are the power spectral density of X and Y ,
respectively.

The result of computing each measure for all pair-wise
combinations was a 19 x 19 matrix for the electrode-level
(corresponding to 19 electrodes) and a 68 x 68 matrix for
the source-level (68 ROIs).

C. Network parameters
Network parameters derived form graph theory summarize

one or several aspects of global and local brain connectivity.
In this study, we analyzed three complementary metrics:
mean node degree (k), characteristic path length (L), and
clustering coefficient (C).
k is a basic centrality metric that represents the total

‘wiring cost’ of the whole network. It is defined as the node-
average of the sum of all neighboring link weights [11]:

k =
1

N
ki =

1

N

∑
j∈N

aij , (3)

where aij is the connectivity value between nodes i and j
and N is the total number of nodes.
L is the most commonly used measure of integration and

is defined as the average shortest path length between all
pairs of nodes in the network [11]:

L =
1

N

∑
i∈N

∑
j∈N,j 6=i dij

N − 1
, (4)

where dij is the shortest path length (distance) between nodes
i and j.
C is a segregation metric and represents the fraction of

the node neighbors that are also neighbors of each other. It
reflects, on average, the prevalence of clustered connectivity
around individual nodes [11]. Mathematically, it is defined
as [11]:

C =
1

N

∑
i∈N

2ti
ki(ki − 1)

, (5)

where ti is the geometric mean of triangles of each node.

D. Statistical analysis
In order to study how the connectivity metrics are af-

fected by volume conduction, the correlation between source
and electrode connectivity results was performed using the
Pearson correlation coefficient. Then, their ability to obtain
statistical differences between all groups were evaluated with
the Kuskal-Wallis test, while differences between pairwise
groups were evaluated using the Mann-Whitney U -test.



Fig. 1. Grand-average AEC, PLI , and MSCOH scatterplots of electrode and source results. The correlation strength is reported as Pearson ρ values.

IV. RESULTS

A. Connectivity metrics

The scatterplots for the averaged connectivity metrics in
the global band (1-70 Hz) are displayed in Fig. 1. The Pear-
son correlation values between electrode and source results
were high for the three analyzed metrics. Specifically, PLI
showed the highest correlation values taking into account all
groups together (ρ = 0.971), compared to AEC (ρ = 0.963)
and COH (ρ = 0.825). Comparing the different groups
under analysis, PLI and AEC showed similar correlation
values, higher than the ones obtained using MSCOH .
Furthermore, the ability of these metrics to mitigate volume
conduction effects was evaluated comparing the electrode-
and source-level results obtained for each subject. In this
case, AEC showed similar but slightly higher values at
the electrode level compared to source level, exhibiting an
offset independent of the coupling level. MSCOH presented
a similar trend but its offset is higher as the real-source
connectivity increases. Finally, PLI displayed similar values
without any offset, showing the highest correlation among
the analyzed metrics. For these reasons, the subsequent
network analysis was only performed using PLI networks.

B. Network parameters

Fig. 2 displays k, L, and C values for each frequency band
using the metric less affected by volume conduction effects
(PLI) as the connectivity measure at the electrode-level.
Similar results were obtained for source-level. Since results
are frequency-dependent, these parameters were computed
for the six conventional EEG-frequency bands: delta (1-4
Hz), theta (4-8 Hz), alpha (8-13 Hz), beta-1 (13-19 Hz),
beta-2 (19-30 Hz), and gamma (30-70 Hz).

Our results using k revealed an increasing trend of global
connectivity at the theta band, and a global decrease at
alpha band as the disease progresses. Taking into account
differences between pair-wise groups, HC subjects showed
statistically significant lower k values compared with the
other groups at theta band. On the other hand, the behavior
was the opposite at the alpha band, where ADsev patients
obtained statistically significant lower k values than the
other groups. In addition, our L results showed significant

Fig. 2. Averaged k, L, and C distribution plots computed from PLI con-
nectivity matrices in each conventional EEG frequency-band for each group
at the electrode-level. Statistically significant between-group differences are
marked with blue rectangles (p < 0.05, Kruskal-Wallis test) and pairwise
differences are marked with red brackets (p < 0.05, Mann-Whitney U -test).

higher values as dementia severity increases at delta and theta
frequency bands. In the delta band, most of these differences
between groups were statistically significant, whereas in the
theta band only between HC subjects and the other groups.
However, results obtained with L in the alpha band showed
a slightly decrease as AD severity increases, being only
significant for ADmil vs. ADmod and ADsev comparisons.
Finally, C followed a very similar trend compared to L, with
significant increments at delta and theta, and decrements at
alpha as AD progresses.



V. DISCUSSION

In the present study, we analyzed the behavior of three
different connectivity metrics (AEC, PLI , and MSCOH)
to overcome the spurious effects introduced by EEG volume
conduction comparing the obtained values at electrode and
source levels. In addition, we evaluated the ability of three
complementary network parameters to summarize the prop-
erties of the obtained networks during AD continuum.

In order to answer the first research question, we compared
the correlation between the averaged connectivity results
at the electrode and source level. Only Lai et al. [12]
have previously employed a similar methodology to compare
average connectivity values between source and scalp level.
Their results showed that AEC and PLI had a very similar
performance (ρ = 0.890 and ρ = 0.878, respectively).
Their dataset is only comprised by 109 control subjects
[12]. In our study, we used a larger database comprised
by HC subjects, MCI patients, and mild, moderate, and
severe AD patients. This has allowed us to have a higher
statistical power and to evaluate the connectivity metrics
behavior taking into account different brain conditions pro-
duced by the neurodegenerative processes, such as decreased
hippocampal volume or gray matter density loss [13]. These
structural brain changes yield to produce different volume
conduction effects for each group under study, as reflected by
the variation in the correlation coefficient between different
groups (see Fig.1). This analysis has allowed us to determine
that PLI has the best performance detecting real coupling
when comparing source and electrode levels. These results
are in line with the ones obtained in our previous work using
synthetic signals [5].

Furthermore, our database has been analyzed using three
different graph theory parameters from the PLI connectiv-
ity networks. Network parameters in low frequency bands
(delta and theta) indicated that networks are characterized
by higher average connectivity as the disease progresses
(revealed by an increase in the average node degree), lower
integration (increase in the characteristic path length), and
higher segregation (increase in clustering coefficient). These
findings are in line with studies that reported decreased in-
tegration and increased segregation observed in AD patients
compared with HC subjects [14], [15]. One possible clinical
interpretation for the increased C reflects a compensatory
mechanism that is triggered by the dysfunctional integration
in AD brain networks [15]. In this regard, a longitudinal
study also reported a higher L and increased C during AD
progression [16].

This study has two main limitations. Firstly, network
parameters were computed in the classical EEG frequency
bands to characterize the AD continuum. This approach
could lead to obtain contradictory results when comparing
frequency bands. Thus, multiplex network approaches may
be useful to summarize all information in only one value,
easier to interpret [17]. Secondly, despite we had the AD
continuum divided into four severity groups, it would be
useful to perform a longitudinal study focused on MCI

subjects. This could allow us to study the changes of the
subjects that remain stable and those that progress to AD.

VI. CONCLUSIONS
In conclusion, the present study confirms that functional

connectivity metrics are not immune to volume conduction,
but PLI is the least affected when electrode and source
results are compared. Different network parameters (k, L,
and C) computed from PLI networks have proven their
usefulness to summarize different network properties and
reflect the brain changes caused in the different stages of AD
continuum, from MCI to ADsev . These results suggest that,
as the disease severity increases, network topologies tend to
be less integrated and more segregated, reducing their global
performance and enhancing their local performance. These
network changes seem to be due to alterations in neuronal
activity in dementia, since they are computed using PLI ,
the metric less affected by volume conduction effects.
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